Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Maximum Likelihood Range Dependence Compensation for STAP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xavier Neyt ; Electrical Engineering Department, Royal Military Academy, Brussels, Belgium. Xavier.Neyt@rma.ac.be ; Marc Acheroy ; Jacques G. Verly

We present a new method to estimate the clutter-plus-noise covariance matrix used to compute an adaptive filter in space-time adaptive processing (STAP). The method computes a ML estimate of the clutter scattering coefficients using a Bayesian framework and knowledge on the structure of the covariance matrix. A priori information on the clutter statistics is used to regularize the estimation method. Other estimation methods based on the computation of the power spectrum using for instance the periodogram are compared to our method. The result in terms of SINR loss shows that the proposed method outperforms the other ones.

Published in:

2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07  (Volume:2 )

Date of Conference:

15-20 April 2007