By Topic

Phenotyping neurons with pattern recognition of molecular mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. E. Mare ; Sch. of Medicine, Utah Univ., Salt Lake City, UT, USA

Phenotyping cells and tracking their functional states are key tasks in cell biology and molecular medicine. Current cell classification methods are idiosyncratic to specific fields and based on ad hoc discovery of presumed univariate markers. We propose a general theory of phenotyping based on broadly distributed multivariate markers as the metrics of classification and standard pattern recognition algorithms as the method of class discovery. We present a real-world test case based on the vertebrate retina and demonstrate that pattern recognition methods can extract singular populations of neurons from complex heterocellular arrays: populations visualized solely as elements in a micromolecular N-space. The applications of this computational approach to cell phenotyping range from phylogenetics to drug discovery to environmental monitoring.

Published in:

Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on  (Volume:1 )

Date of Conference:

1-4 July 2003