Learning decision rules for pattern classification under a family of probability measures | IEEE Journals & Magazine | IEEE Xplore

Learning decision rules for pattern classification under a family of probability measures


Abstract:

In this paper, uniformly consistent estimation (learnability) of decision rules for pattern classification under a family of probability measures is investigated. In part...Show More

Abstract:

In this paper, uniformly consistent estimation (learnability) of decision rules for pattern classification under a family of probability measures is investigated. In particular, it is shown that uniform boundedness of the metric entropy of the class of decision rules is both necessary and sufficient for learnability under each of two conditions: (i) the family of probability measures is totally bounded, with respect to the total variation metric, and (ii) the family of probability measures contains an interior point, when equipped with the same metric. In particular, this shows that insofar as uniform consistency is concerned, when the family of distributions contains a total variation neighborhood, nothing is gained by this knowledge about the distribution. Then two sufficient conditions for learnability are presented. Specifically, it is shown that learnability with respect to each of a finite collection of families of probability measures implies learnability with respect to their union; also, learnability with respect to each of a finite number of measures implies learnability with respect to the convex hull of the corresponding families of uniformly absolutely continuous probability measures.
Published in: IEEE Transactions on Information Theory ( Volume: 43, Issue: 1, January 1997)
Page(s): 154 - 166
Date of Publication: 06 August 2002

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.