Segmentation of Gabor-filtered textures using deterministic relaxation | IEEE Journals & Magazine | IEEE Xplore

Segmentation of Gabor-filtered textures using deterministic relaxation


Abstract:

A supervised texture segmentation scheme is proposed in this article. The texture features are extracted by filtering the given image using a filter bank consisting of a ...Show More

Abstract:

A supervised texture segmentation scheme is proposed in this article. The texture features are extracted by filtering the given image using a filter bank consisting of a number of Gabor filters with different frequencies, resolutions, and orientations. The segmentation model consists of feature formation, partition, and competition processes. In the feature formation process, the texture features from the Gabor filter bank are modeled as a Gaussian distribution. The image partition is represented as a noncausal Markov random field (MRF) by means of the partition process. The competition process constrains the overall system to have a single label for each pixel. Using these three random processes, the a posteriori probability of each pixel label is expressed as a Gibbs distribution. The corresponding Gibbs energy function is implemented as a set of constraints on each pixel by using a neural network model based on Hopfield network. A deterministic relaxation strategy is used to evolve the minimum energy state of the network, corresponding to a maximum a posteriori (MAP) probability. This results in an optimal segmentation of the textured image. The performance of the scheme is demonstrated on a variety of images including images from remote sensing.
Published in: IEEE Transactions on Image Processing ( Volume: 5, Issue: 12, December 1996)
Page(s): 1625 - 1636
Date of Publication: 31 December 1996

ISSN Information:

PubMed ID: 18290080

Contact IEEE to Subscribe

References

References is not available for this document.