By Topic

Behavioural modelling of operational amplifier faults using VHDL-AMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wilson, P.R. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Kilic, Y. ; Ross, J.N. ; Zwolinski, M.
more authors

The use of behavioural modelling for operational amplifiers has been well known for many years and previous work has included modelling of specific fault conditions using a macro-model. In this paper, the models are implemented in a more abstract form using an Analogue Hardware Description Language (AHDL), VHDL-AMS, taking advantage of the ability to control the behaviour of the model using high-level fault condition states. The implementation method allows a range of fault conditions to be integrated without switching to a completely new model. The various transistor faults are categorised, and used to characterise the behaviour of the HDL models. Simulations compare the accuracy and speed of the transistor and behavioural level models under a set of representative fault conditions

Published in:

Design, Automation and Test in Europe Conference and Exhibition, 2002. Proceedings

Date of Conference:

2002