By Topic

Minimum energy fixed-priority scheduling for variable voltage processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gang Quan ; Dept. of Comput. Sci. & Eng., Notre Dame Univ., IN, USA ; Hu, X.S.

To fully exploit the benefit of variable voltage processors, voltage schedules must be designed in the context of work load requirement. In this paper, we present an approach to finding the least-energy voltage schedule for executing real-time jobs on such a processor according to a fixed priority, preemptive policy. The significance of our approach is that the theoretical limit in terms of energy saving for such systems is established, which can thus serve as the standard to evaluate the performance of various heuristic approaches. Two algorithms for deriving the optimal voltage schedule are provided. The first one explores fundamental properties of voltage schedules while the second one builds on the first one to further reduce the computational cost. Experimental results are shown to compare the results of this paper with previous ones

Published in:

Design, Automation and Test in Europe Conference and Exhibition, 2002. Proceedings

Date of Conference:

2002