By Topic

Streaming-data algorithms for high-quality clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
O'Callaghan, L. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Mishra, N. ; Meyerson, A. ; Guha, S.
more authors

Streaming data analysis has recently attracted attention in numerous applications including telephone records, Web documents and click streams. For such analysis, single-pass algorithms that consume a small amount of memory are critical. We describe such a streaming algorithm that effectively clusters large data streams. We also provide empirical evidence of the algorithm's performance on synthetic and real data streams

Published in:

Data Engineering, 2002. Proceedings. 18th International Conference on

Date of Conference: