By Topic

GADT: a probability space ADT for representing and querying the physical world

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Faradjian ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA ; J. Gehrke ; P. Bonnett

Large sensor networks are being widely deployed for measurement, detection and monitoring applications. Many of these applications involve database systems to store and process data from the physical world. This data has inherent measurement uncertainties that are properly represented by continuous probability distribution functions (PDFs). We introduce a new object-relational abstract data type (ADT) - the Gaussian ADT (GADT) - that models physical data as Gaussian PDFs, and we show that existing index structures can be used as fast access methods for GADT data. We also present a measurement-theoretic model of probabilistic data and evaluate GADT in its light

Published in:

Data Engineering, 2002. Proceedings. 18th International Conference on

Date of Conference: