By Topic

Super-resolution from multiple views using learnt image models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Capel, D. ; Dept. of Eng. Sci., Oxford Univ., UK ; Zisserman, A.

The objective of the work presented is the super-resolution restoration of a set of images, and we investigate the use of learnt image models within a generative Bayesian framework. It is demonstrated that restoration of far higher quality than that determined by classical maximum likelihood estimation can be achieved by either constraining the solution to lie on a restricted sub-space, or by using the sub-space to define a spatially varying prior. This sub-space can be learnt from image examples. The methods are applied to both real and synthetic images of text and faces, and results are compared to R.R. Schultz and R.L. Stevenson's (1996) MAP estimator. We consider in particular images of scenes for which the point-to-point mapping is a plane projective transformation which has 8 degrees of freedom. In the real image examples, registration is obtained from the images using automatic methods.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

2001