By Topic

Minimizing thermal resistance and collector-to-substrate capacitance in SiGe BiCMOS on SOI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)

We describe a low fabrication cost, high-performance implementation of SiGe BiCMOS on SOL The use of high-energy implant allows the simultaneous formation of the subcollector and an additional n-type region below the buried oxide. The combination of buried oxide layer and floating n-type region underneath results in a very low collector-to-substrate capacitance. We also show that this process option achieves a much lower thermal resistance than using SOI with deep trench isolation, both reducing cost and curbing self-heating effects.

Published in:

Electron Device Letters, IEEE  (Volume:23 ,  Issue: 3 )