By Topic

Microbubble actuators - an introduction to microscale thermal fluid engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. Takahashi ; Dept. of Aeronaut. & Astronaut., Kyushu Univ., Fukuoka, Japan

Liquid-gas interface often appears in the microfluidic systems due to dissolved and residual gas or thermally generated vapor. Thermal expansion of bubble is the most famous way to control this interface and is used as the micro pumping engine in the thermal ink-jet printer. On the other hand, thermocapillary force of droplet is successfully applied in the micro optical switch. This force is based on the controllability of surface tension that depends on temperature. In thermal fluid engineering, a similar phenomena appears on bubbles and liquid surfaces in temperature or concentration gradient and is known generally as Marangoni effect. The contemporary microfabrication technique enables us to fabricate a microheater tiny enough to control temperature quickly and precisely in micro length scale. Consequently the Marangoni effect or thermocapillary force on microbubbles can be managed artificially and the microbubble of the order of hundreds micrometers can be driven without any movable part. Novel actuators using microbubble and their microfluidic mechanisms are explained.

Published in:

Microprocesses and Nanotechnology Conference, 2001 International

Date of Conference:

Oct. 31 2001-Nov. 2 2001