By Topic

Chemical sensors for portable, handheld field instruments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. M. Wilson ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; S. Hoyt ; J. Janata ; K. Booksh
more authors

A review of three commonly used classes of chemical sensor technologies as applicable to implementation in portable, handheld field instruments is presented. Solid-state gas and chemical sensors have long been heralded as the solution to a wide variety of portable chemical sensing system applications. However, advances in optical sensing technology have reduced the size of supporting infrastructure to be competitive with their solid-state counterparts. Optical, solid-state, and hybrid arrays of sensors have application for portable instruments, but issues of insufficient selectivity and sensitivity continue to hamper the widespread introduction of these miniaturized sensors for solving chemical sensing problems in environments outside the laboratory. In this article, we evaluate three of the major classes of compact chemical sensors for portable applications: (solid-state) chemiresistors, (solid-state) CHEMFETs, and (optical) surface plasmon resonance sensors (SPR). These sensors are evaluated and reviewed, according to the current state of research, in terms of their ability to operate at low-power, small-size, and relatively low-cost in environments, with numerous interferents and variable ambient conditions

Published in:

IEEE Sensors Journal  (Volume:1 ,  Issue: 4 )