Cart (Loading....) | Create Account
Close category search window
 

Stability of microelectromechanical devices for electrical metrology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyynarainen, J. ; VTT Autom., Otakaari, Finland ; Oja, A.S. ; Seppa, H.

Microelectromechanical systems (MEMS) have been recently proposed for realizing several references in electrical metrology. Such devices are formed from micromachined electrodes of which at least one is supported by a compliant structure such that an electrostatic force between two electrodes displaces the moving electrode. The properties of these electromechanical devices can be very stable if they are fabricated from single-crystalline silicon and sealed hermetically in a low-pressure atmosphere. In comparison to several semiconducting reference devices, micromechanical components are large in size and consume a negligible power. Thus, a low 1/f noise level is expected. The proposed MEMS electrical references include a DC and an AC voltage reference, an AC/DC converter, a low-frequency voltage divider, a microwave and millimeter-wave detector, a DC current reference, etc. Measurements on a prototype for a MEMS DC reference are discussed. The stability is presently limited by charge fluctuations on the native oxides of electrode surfaces. Preliminary results show relative fluctuations below 1 μV/V

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:50 ,  Issue: 6 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.