By Topic

On the identification of a nonlinear function in a feedback loop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mehta, P.G. ; Center for Appl. Math., Cornell Univ., Ithaca, NY, USA ; Banaszuk, A.

Many models of systems, important in practice have the form of an interconnection of a known linear model and an unknown nonlinear function. One example of such a system is a model of thermoacoustic instability affecting gas turbine engines and rockets (so-called thermoacoustic feedback loop). In this paper, we propose a computationally attractive algorithm for identifying static nonlinearity in a thermoacoustic feedback loop which is either in a limit cycle or is being, driven by Gaussian noise. The algorithm is based upon functional analytic treatment of the describing function method and lends itself nicely to a class of limit cycling or noise driven feedback systems where the nonlinearity is of a special type. We present examples as well as a simulations with the thermoacoustic feedback loop as an application of the identification algorithm

Published in:

Decision and Control, 2001. Proceedings of the 40th IEEE Conference on  (Volume:5 )

Date of Conference: