By Topic

Monte Carlo smoothing with application to audio signal enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fong, William ; Signal Process. Group, Cambridge Univ., UK ; Godsill, S.J. ; Doucet, Arnaud ; West, M.

We describe methods for applying Monte Carlo filtering and smoothing for estimation of unobserved states in a nonlinear state-space model. By exploiting the statistical structure of the model, we develop a Rao-Blackwellized particle smoother. Due to the lengthy nature of real signals, we suggest processing the data in blocks, and a block-based smoother algorithm is developed for this purpose. All the algorithms suggested are tested with real speech and audio data, and the results are shown and compared with those generated using the generic particle smoother and the extended Kalman filter (EKF). It is found that the proposed Rao-Blackwellized particle smoother improves on the standard particle smoother and the extended Kalman smoother. In addition, the proposed block-based smoother algorithm enhances the efficiency of the proposed Rao-Blackwellized smoother by significantly reducing the storage capacity required for the particle information

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 2 )