By Topic

Particle filters for state-space models with the presence of unknown static parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. Storvik ; Comput. Center, Oslo Univ., Norway

Particle filters for dynamic state-space models handling unknown static parameters are discussed. The approach is based on marginalizing the static parameters out of the posterior distribution such that only the state vector needs to be considered. Such a marginalization can always be applied. However, real-time applications are only possible when the distribution of the unknown parameters given both observations and the hidden state vector depends on some low-dimensional sufficient statistics. Such sufficient statistics are present in many of the commonly used state-space models. Marginalizing the static parameters avoids the problem of impoverishment, which typically occurs when static parameters are included as part of the state vector. The filters are tested on several different models, with promising results

Published in:

IEEE Transactions on Signal Processing  (Volume:50 ,  Issue: 2 )