By Topic

Stability analysis of radome error and calibration using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chung-Liang Lin ; Inst. of Autom. Control Eng., Feng Chia Univ., Taichung, Taiwan

Theoretical and numerical simulation analyses for the radome refraction effect on stability and induced miss distance of missiles guided by proportional navigation are presented. Quantitative stability conditions are derived with respect to linear and nonlinear radome error. A novel neural network compensation scheme for radome error is also presented. It is shown that the proposed neural compensator can effectively reduce the influence resulting from radome error. Preliminary results indicate encouraging improvement in the miss distance and magnitude of the acceleration command

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:37 ,  Issue: 4 )