By Topic

Nonlinear blind source separation using higher order statistics and a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying Tan ; Chinese Univ. of Hong Kong, China ; Jun Wang

This paper presents a novel method for blindly separating unobservable independent source signals from their nonlinear mixtures. The demixing system is modeled using a parameterized neural network whose parameters can be determined under the criterion of independence of its outputs. Two cost functions based on higher order statistics are established to measure the statistical dependence of the outputs of the demixing system. The proposed method utilizes a genetic algorithm (GA) to minimize the highly nonlinear and nonconvex cost functions. The GA-based global optimization technique is able to obtain superior separation solutions to the nonlinear blind separation problem from any random initial values. Compared to conventional gradient-based approaches, the GA-based approach for blind source separation is characterized by high accuracy, robustness, and convergence rate. In particular, it is very suitable for the case of limited available data. Simulation results are discussed to demonstrate that the proposed GA-based approach is capable of separating independent sources from their nonlinear mixtures generated by a parametric separation model

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:5 ,  Issue: 6 )