Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Modeling and analysis of custom power systems by PSCAD/EMTDC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anaya-Lara, O. ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; Acha, E.

This paper addresses the timely issue of modeling and analysis of custom power controllers, a new generation of power electronics-based equipment aimed at enhancing the reliability and quality of power flows in low-voltage distribution networks. The modeling approach adopted in the paper is graphical in nature, as opposed to mathematical models embedded in code using a high-level computer language. The well-developed graphic facilities available in an industry standard power system package, namely PSCAD/EMTDC, are used to conduct all aspects of model implementation and to carry out extensive simulation studies. Graphics-based models suitable for electromagnetic transient studies are presented for the following three custom power controllers: the distribution static compensator (D-STATCOM), the dynamic voltage restorer (DVR), and the solid-state transfer switch (SSTS). Comprehensive results are presented to assess the performance of each device as a potential custom power solution. The paper is written in a tutorial style and aimed at the large PSCAD/EMTDC user base

Published in:

Power Delivery, IEEE Transactions on  (Volume:17 ,  Issue: 1 )