By Topic

Omnivariate decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yıldız, O.T. ; Dept. of Comput. Eng., Bogazici Univ., Istanbul, Turkey ; Alpaydin, E.

Univariate decision trees at each decision node consider the value of only one feature leading to axis-aligned splits. In a linear multivariate decision tree, each decision node divides the input space into two with a hyperplane. In a nonlinear multivariate tree, a multilayer perceptron at each node divides the input space arbitrarily, at the expense of increased complexity and higher risk of overfitting. We propose omnivariate trees where the decision node may be univariate, linear, or nonlinear depending on the outcome of comparative statistical tests on accuracy thus matching automatically the complexity of the node with the subproblem defined by the data reaching that node. Such an architecture frees the designer from choosing the appropriate node type, doing model selection automatically at each node. Our simulation results indicate that such a decision tree induction method generalizes better than trees with the same types of nodes everywhere and induces small trees

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 6 )