By Topic

The relevance vector machine technique for channel equalization application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, S. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Gunn, S.R. ; Harris, C.J.

The relevance vector machine (RVM) technique is applied to communication channel equalization. It is demonstrated that the RVM equalizer can closely match the optimal performance of the Bayesian equalizer, with a much sparser kernel representation than that is achievable by the state-of-art support vector machine (SVM) technique

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 6 )