Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An input-output based robust stabilization criterion for neural-network control of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fernandez de Caflete, J. ; Departmento de Ingeneria de Sistemas y Automatica, Malaga Univ., Spain ; Barreiro, A. ; Garcia-Cerezo, A. ; Garcia-Moral, I.

A stabilization method based on the input-output conicity criterion is presented. Conventional learning algorithms are applied to adjust the controller dynamics, and robust stability of the closed-loop system is guaranteed by modifying the training patterns which yield unstable behavior. The methodology developed expands the class of nonlinear systems to be controlled using neural control schemes, so that the stabilization of a broad class of neural-network-based control systems, even with unknown dynamics, is assured. Straightforwardness in the application of this method is evident in contrast to the Lyapunov function approach

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 6 )