By Topic

Hardware compiler realising concurrent processes in reconfigurable logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Diessel, O. ; Sch. of Comput. Sci. & Eng., New South Wales Univ., Sydney, NSW, Australia ; Milne, G.

Reconfigurable computers based on field programmable gate array technology allow applications to be realised directly in digital logic. The inherent concurrency of hardware distinguishes such computers from microprocessor-based machines in which the concurrency of the underlying hardware is fixed and abstracted from the programmer by the software model. However, reconfigurable logic provides us with the potential to exploit 'real' concurrency. It is therefore interesting to know how to exploit this concurrency, how to model concurrent computations, and which languages allow this dynamic hardware to be programmed most effectively. The purpose of this work is to describe an FPGA compiler for the Circal process algebra. In so doing, the authors demonstrate that behavioural descriptions expressed in a process algebraic language can be readily and intuitively compiled to reconfigurable logic and that this contributes to the goal of discovering appropriate high-level languages for run-time reconfiguration

Published in:

Computers and Digital Techniques, IEE Proceedings -  (Volume:148 ,  Issue: 45 )