By Topic

Spectral partitioning of random graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
McSherry, F. ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

Problems such as bisection, graph coloring, and clique are generally believed hard in the worst case. However, they can be solved if the input data is drawn randomly from a distribution over graphs containing acceptable solutions. In this paper we show that a simple spectral algorithm can solve all three problems above in the average case, as well as a more general problem of partitioning graphs based on edge density. In nearly all cases our approach meets or exceeds previous parameters, while introducing substantial generality. We apply spectral techniques, using foremost the observation that in all of these problems, the expected adjacency matrix is a low rank matrix wherein the structure of the solution is evident.

Published in:

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on

Date of Conference:

8-11 Oct. 2001