Cart (Loading....) | Create Account
Close category search window
 

Source routing and scheduling in packet networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We study routing and scheduling in packet-switched networks. We assume an adversary that controls the injection time, source, and destination for each packet injected. A set of paths for these packets is admissible if no link in the network is overloaded. We present the first on-line routing algorithm that finds a set of admissible paths whenever this is feasible. Our algorithm calculates a path for each packet as soon as it is injected at its source using a simple shortest path computation. The length of a link reflects its current congestion. We also show how our algorithm can be implemented under today's Internet routing paradigms. When the paths are known (either given by the adversary or computed as above) our goal is to schedule the packets along the given paths so that the packets experience small end-to-end delays. The best previous delay bounds for deterministic and distributed scheduling protocols were exponential in the path length. In this paper we present the first deterministic and distributed scheduling protocol that guarantees a polynomial end-to-end delay for every packet. Finally, we discuss the effects of combining routing with scheduling. We first show that some, unstable scheduling protocols remain unstable no matter how the paths are chosen. However, the freedom to choose paths can make a difference. For example, we show that a ring with parallel links is stable for all greedy scheduling protocols if paths are chosen intelligently, whereas this is not the case if the adversary specifies the paths.

Published in:

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on

Date of Conference:

8-11 Oct. 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.