Cart (Loading....) | Create Account
Close category search window
 

Motion detection with non-stationary background

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Ren ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Chin-Seng Chua ; Yeong-Khing Ho

This paper proposes a new method for moving object (foreground) detection with non-stationary background using background subtraction. While background subtraction has traditionally worked well for stationary backgrounds, the same cannot be implied for a nonstationary viewing sensor. To a limited extent, motion compensation for non-stationary backgrounds can be applied, but in practice, it is difficult to realize the motion compensation to sufficient accuracy and the background subtraction algorithm will fail for a moving scene. The problem is further compounded when the moving target to be detected/tracked is small, since the pixel error in motion compensating the background will subsume the small target. A spatial distribution of Gaussians (SDG) model is proposed to deal with moving object detection having motion compensation which is only approximately extracted. The distribution of each background pixel is temporally and spatially modeled; a pixel in the current frame is then classified based on this statistical model. The emphasis of this approach is on the robust detection of moving objects even with approximately accurate motion compensation, noise, or environmental changes. Test cases involving the detection of small moving objects with a highly textured background and a pan-tilt tracking system are demonstrated successfully

Published in:

Image Analysis and Processing, 2001. Proceedings. 11th International Conference on

Date of Conference:

26-28 Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.