By Topic

Wavelet-based texture segmentation of remotely sensed images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Acharyya, M. ; Machine Intelligence Unit, Indian Stat. Inst., Calcutta, India ; Kundu, M.K.

A texture feature extraction scheme based on M-band wavelet packet frames is investigated. The features so extracted are used for segmentation of satellite images which usually have complex and overlapping boundaries. The underlying principle is based on the fact that different image regions exhibit different textures. Since most significant information of a texture often lies in the intermediate frequency bands, the present work employs an overcomplete wavelet decomposition scheme called discrete M-band wavelet packet frame (DM-bWPF), which yields improved segmentation accuracies. Wavelet packets represent a generalization of the method of multiresolution decomposition and comprise all possible combinations of subband tree decomposition. We propose a computationally efficient search procedure to find the optimal basis based on some maximum criterion of textural measures derived from the statistical parameters of each of the subbands, to locate dominant information in each subbands (frequency channels) and decide further decomposition

Published in:

Image Analysis and Processing, 2001. Proceedings. 11th International Conference on

Date of Conference:

26-28 Sep 2001