By Topic

High-power highly reliable Al-free 940-nm diode lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
G. Erbert ; Ferdinand-Braun-Inst. fur Hochstfrequenztech., Berlin, Germany ; G. Beister ; R. Hulsewede ; A. Knauer
more authors

Al-free diode lasers emitting at 930 nm having a broadened step-index waveguide structure and a single active InGaAs quantum well have been realized by MOVPE. The impact of waveguide thickness on device performance has been studied. The highest wall plug efficiency of about 60% has been obtained with diode lasers having a 1-μm-thick waveguide. Increasing the waveguide thickness to 1.5 μm resulted in record low degradation rates below 10-5 h-1 for 3-W output power (100 μm stripe width). The same diode lasers showed a good long-term reliability even at an output power of 4 W. The best beam quality had diode lasers with a 2-μm-thick waveguide, at the expense of a reduced temperature stability

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:7 ,  Issue: 2 )