By Topic

High-power laser diodes with dry-etched mirror facets and integrated monitor photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deichsel, E. ; Dept. of Optoelectron., Ulm Univ., Germany ; Eberhard, F. ; Jager, R. ; Unger, P.

High-power broad-area InGaAs-AlGaAs-GaAs single-quantum-well separate-confinement heterostructure (SQW-GRINSCH) lasers with dry-etched mirror facets and integrated monitor photodiodes have been investigated. A multilayer resist system has been employed as a mask for the chemically assisted ion-beam etching (CAIBE) process resulting in vertical and smooth laser facets. Thick electroplated gold layers on top of the ohmic contacts improve the heatsinking of the lasers leading to reasonable continuous-wave (CW) output powers even when the devices are mounted junction-side up. Monolithically integrated monitor photodiodes provide a linear response to the optical output powers of the laser diodes. The properties of broad-area lasers with dry-etched and cleaved facets are almost identical, Record values for the CW output powers of 2.59 W per uncoated facet and wall-plug efficiencies of more than 55% have been achieved with junction-side-down mounted devices

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:7 ,  Issue: 2 )