By Topic

A nonseparable VLSI architecture for two-dimensional discrete periodized wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
King-Chu Hung ; Dept. of Electr. Eng., I-Shou Univ., Kaohsiung, Taiwan ; Yao-Shan Hung ; Yu-Jung Huang

A modified two-dimensional (2-D) discrete periodized wavelet transform (DPWT) based on the homeomorphic high-pass filter and the 2-D operator correlation algorithm is developed in this paper. The advantages of this modified 2-D DPWT are that it can reduce the multiplication counts and the complexity of boundary data processing in comparison to other conventional 2-D DPWT for perfect reconstruction. In addition, a parallel-pipeline architecture of the nonseparable computation algorithm is also proposed to implement this modified 2-D DPWT. This architecture has properties of noninterleaving input data, short bus width request, and short latency. The analysis of the finite precision performance shows that nearly half of the bit length can be saved by using this nonseparable computation algorithm. The operation of the boundary data processing is also described in detail. In the three-stage decomposition of an N/spl times/N image, the latency is found to be N/sup 2/+2N+18.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:9 ,  Issue: 5 )