Cart (Loading....) | Create Account
Close category search window
 

On the property of the curl-curl matrix in finite element analysis with edge elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Igarashi, H. ; Fac. of Eng., Kagawa Univ., Takamatsu, Japan

This paper discusses properties of the curl-curl matrix in the finite element formulation with edge elements. Moreover, the observed deceleration in convergence of the CG and ICCG methods applied to magnetostatic problems through the tree-cotree gauging is explained on the basis of the eigenvalue separation property. From the eigenvalue separation property it follows that neither minimum nonzero eigenvalue of the curl-curl matrix nor maximum one increase through the tree-cotree gauging. Hence it is concluded that the condition number of the curl-curl matrix tends to grow by its definition. Moreover, the maximum eigenvalue tends to keep constant whereas the minimum nonzero eigenvalue reduces. This property also makes the condition number worse

Published in:

Magnetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.