By Topic

Frequency response of common lead and shield type magnetic tunneling junction head

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Shimazawa, K. ; Data Storage Technol. Center, TDK Corp., Nagano, Japan ; Sun, J.J. ; Kasahara, N. ; Sato, K.
more authors

In this work, the frequency response in magnetic tunnel junction (MTJ) heads was studied. Both stray capacitance and junction resistance, forming a low-pass-filter, have to be reduced to improve the cutoff frequency in MTJ heads. By employing an Ar gas cluster ion beam (GCIB) process, junctions grown on the magnetic shield show a resistance area product as low as 3.6 Ωμm2 and tunneling magneto-resistance over 14%. The dominant capacitance in common lead and shield MTJ heads was found mainly resulting from the shield-to-shield spacing, whose capacitance can be reduced by using an SiO2 gap layer instead of Al2O3 layer and thus leading to an improved frequency response. Simple analysis indicates that a read amplifier design with low impedance could be helpful to realize a high data transfer rate, and a rate of around 800 Mbps for 100 Gbits/in2 recording system can be thus expected

Published in:

Magnetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )