By Topic

Neural-network control of mobile manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng Lin ; Dept. of Mech. Eng. & Ind. Eng., Toronto Univ., Ont., Canada ; A. A. Goldenberg

In this paper, a neural network (NN)-based methodology is developed for the motion control of mobile manipulators subject to kinematic constraints. The dynamics of the mobile manipulator is assumed to be completely unknown, and is identified online by the NN estimators. No preliminary learning stage of NN weights is required. The controller is capable of disturbance-rejection in the presence of unmodeled bounded disturbances. The tracking stability of the closed-loop system, the convergence of the NN weight-updating process and boundedness of NN weight estimation errors are all guaranteed. Experimental tests on a 4-DOF manipulator arm illustrate that the proposed controller significantly improves the performance in comparison with conventional robust control

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )