By Topic

Weighted least squares training of support vector classifiers leading to compact and adaptive schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Navia-Vazquez ; Dept. of Commun. Technol., Univ. Carlos III de Madrid, Spain ; F. Perez-Cruz ; A. Artes-Rodriguez ; A. R. Figueiras-Vidal

An iterative block training method for support vector classifiers (SVCs) based on weighted least squares (WLS) optimization is presented. The algorithm, which minimizes structural risk in the primal space, is applicable to both linear and nonlinear machines. In some nonlinear cases, it is necessary to previously find a projection of data onto an intermediate-dimensional space by means of either principal component analysis or clustering techniques. The proposed approach yields very compact machines, the complexity reduction with respect to the SVC solution is especially notable in problems with highly overlapped classes. Furthermore, the formulation in terms of WLS minimization makes the development of adaptive SVCs straightforward, opening up new fields of application for this type of model, mainly online processing of large amounts of (static/stationary) data, as well as online update in nonstationary scenarios (adaptive solutions). The performance of this new type of algorithm is analyzed by means of several simulations

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )