Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Geometric neural computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bayro-Corrochano, E.J. ; Comput. Sci. Dept., CINVESTAV-IPN, Mexico City, Mexico

This paper shows the analysis and design of feedforward neural networks using the coordinate-free system of Clifford or geometric algebra. It is shown that real-, complex-, and quaternion-valued neural networks are simply particular cases of the geometric algebra multidimensional neural networks and that some of them can also be generated using support multivector machines (SMVMs). Particularly, the generation of radial basis function for neurocomputing in geometric algebra is easier using the SMVM, which allows one to find automatically the optimal parameters. The use of support vector machines in the geometric algebra framework expands its sphere of applicability for multidimensional learning. Interesting examples of nonlinear problems show the effect of the use of an adequate Clifford geometric algebra which alleviate the training of neural networks and that of SMVMs

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 5 )