By Topic

Adaptive parallel distributive join algorithm for skewed data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. M. Chung ; Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; A. Chatterjee

We present an adaptive version of the parallel distributive join (DJ) algorithm that we proposed in (Chung and Yang, 1996). The adaptive parallel DJ algorithm can handle the data skew in operand relations efficiently. We implemented the original and adaptive parallel DJ algorithms on a network of Alpha workstations using the Parallel Virtual Machine (PVM). We analyzed the performance of the algorithms, and compared it with that of the parallel Hybrid-Hash (HH) join algorithms. Our results show that the parallel DJ algorithms perform comparably with the parallel HH join algorithms over the entire range of the number of processors used and for different join selectivities. A significant advantage of the parallel DJ algorithms is that they can easily support non-equijoin operations

Published in:

Parallel and Distributed Systems, 2001. ICPADS 2001. Proceedings. Eighth International Conference on

Date of Conference: