By Topic

Best-bases feature extraction algorithms for classification of hyperspectral data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, S. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Ghosh, J. ; Crawford, M.M.

Due to advances in sensor technology, it is now possible to acquire hyperspectral data simultaneously in hundreds of bands. Algorithms that both reduce the dimensionality of the data sets and handle highly correlated bands are required to exploit the information in these data sets effectively. the authors propose a set of best-bases feature extraction algorithms that are simple, fast, and highly effective for classification of hyperspectral data. These techniques intelligently combine subsets of adjacent bands into a smaller number of features. Both top-down and bottom-up algorithms are proposed. The top-down algorithm recursively partitions the bands into two (not necessarily equal) sets of bands and then replaces each final set of bands by its mean value. The bottom-up algorithm builds an agglomerative tree by merging highly correlated adjacent bands and projecting them onto their Fisher direction, yielding high discrimination among classes. Both these algorithms are used in a pairwise classifier framework where the original C-class problem is divided into a set of (2C) two-class problems. The new algorithms (1) find variable length bases localized in wavelength, (2) favor grouping highly correlated adjacent bands that, when merged either by taking their mean or Fisher linear projection, yield maximum discrimination, and (3) seek orthogonal bases for each of the (2C) two-class problems into which a C-class problem can be decomposed. Experiments on an AVIRIS data set for a 12-class problem show significant improvements in classification accuracies while using a much smaller number of features

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 7 )