Cart (Loading....) | Create Account
Close category search window
 

Goal-oriented biped walking based on force interaction control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Silva, F.M. ; Dept. of Mech. Eng., Aveiro Univ., Portugal ; Machado, J.A.T.

Addresses the problem of modelling and control of a biped robot by combining Cartesian-based position and force control algorithms. The walking cycle is divided in two phases: single support, in which one leg is in contact with the ground and the other leg swings forward, and double support, in which the forward leg absorbs the impact and gradually accepts the robot's weight. The contact of the foot with the constrained surface is modelled through linear and nonlinear spring-damper systems. The proposed control approach is based on simple motion goals taking into account the reaction forces between the feet and the ground. The control algorithm is tested through several experiments and its effectiveness and robustness is discussed.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:4 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.