By Topic

On the dynamics of parallel manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yiu, Y.K. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong ; Cheng, H. ; Xiong, Z.H. ; Liu, G.F.
more authors

Studies the dynamics of parallel manipulators. We first have a brief review and discussion on different dynamics formulations in the literature (Newton-Euler, direct Lagrangian, and Lagrange-D'Alembert formulation on the reduced system). Then we show the equivalence of these methods. Based on the concepts from differential manifolds, we prove that away from configuration singularity, there exists a projection from the joint space to parameterize the configuration space. The fact that the dynamics is well defined even at actuators singularity, end-effector singularity and other kinds of parameterization singularity is highlighted. For the method of reduced systems, there are two main drawbacks. Firstly the joints being cut for forming the tree system are presumed to have no external torque. Secondly the force and torque applied to other links of the manipulator is not considered. We propose two methods to remedy the situation. Firstly by cutting a link instead of a joint, all the joints torque can be incorporated into our equations of motion. This is useful not only for the case of actuating all the joints, but also if we consider compensating the joints friction. Secondly we propose a concept of transforming force to the generalized force space so that all the other forces and torque can be considered.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:4 )

Date of Conference: