Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Self-tuning position and force control of an underwater hydraulic manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Clegg, A.C. ; Adv. Control Technol. Club, Ind. Syst. & Control Ltd., Glasgow, UK ; Dunnigan, M.W. ; Lane, D.M.

Current generation unmanned underwater vehicles, equipped with robotic manipulators, are teleoperated and consequently place a large workload burden on the human operator. A greater degree of automation could improve the efficiency and accuracy with which underwater tasks are carried out. These tasks can involve manipulator motion that is both unconstrained and/or constrained. For unconstrained motion, where a trajectory requires following, a prerequisite is good joint angle control. An adaptive self-tuning pole-placement controller is used for joint angle control. Practical results show the benefits compared to the conventional fixed-gain control. For constrained motion, simultaneous controls of position and force are often required. An adaptive hybrid position/force controller is proposed and compared to a fixed-gain version. Simulation and practical results illustrate the merits and drawbacks of each scheme.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:4 )

Date of Conference:

2001