By Topic

On the whiteness of high-resolution quantization errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Viswanathan ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; R. Zamir

A common belief in quantization theory says that the quantization noise process resulting from uniform scalar quantization of a correlated discrete-time process tends to be white in the limit of small distortion (“high resolution”). A rule of thumb for this property to hold is that the source samples have a “smooth” joint distribution. We give a precise statement of this property, and generalize it to nonuniform quantization and to vector quantization. We show that the quantization errors resulting from independent quantizations of dependent real random variables become asymptotically uncorrelated (although not necessarily statistically independent) if the joint Fisher information (FI) under translation of the two variables is finite and the quantization cells shrink uniformly as the distortion tends to zero

Published in:

IEEE Transactions on Information Theory  (Volume:47 ,  Issue: 5 )