By Topic

Nonlinear control of hydraulic robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sirouspour, M.R. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Salcudean, S.E.

This paper addresses the control problem of hydraulic robot manipulators. The backstepping design methodology is adopted to develop a novel nonlinear position tracking controller. The tracking errors are shown to be exponentially stable under the proposed control law. The controller is further augmented with adaptation laws to compensate for parametric uncertainties in the system dynamics. Acceleration feedback is avoided by using two new adaptive and robust sliding-type observers. The adaptive controllers are proven to be asymptotically stable via Lyapunov analysis. Simulation and experimental results performed with a hydraulic Stewart platform demonstrate the effectiveness of the approach

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:17 ,  Issue: 2 )