By Topic

A CMOS Norton amplifier-based digitally controlled VGA for low-power wireless applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elwan, H. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Soliman, Ahmed M. ; Ismail, M.

A CMOS variable-gain amplifier (VGA) for use in the baseband section of integrated wireless receivers is presented. The VGA circuit is based on a new CMOS realization of the Norton transresistance amplifier. The proposed CMOS realization operates from a 3-V supply voltage with rail-to-rail swing and class AB input and output stages. The standby current of the class AB stages employed can be accurately controlled, leading to a low power consumption, nonslew-rate-limited response. The VGA circuit provides a precise process-independent gain control range of 30 dB with 1-dB gain step. The circuit uses current division techniques to provide an area-efficient 6-bit digital offset trimming capability. Experimental results from a test chip fabricated through MOSIS are provided

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )