By Topic

FCL location selection in large scale power system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nagata, M. ; Central Res. Inst. of Electr. Power Ind., Tokyo, Japan ; Tanaka, K. ; Taniguchi, H.

Maximum short circuit current of a modern power system is becoming so large that the current should be reduced to make more efficient use of power system transmission capability. The fault current limiter (FCL) is a promising solution of this problem and it can be categorized into two types: constant impedance type FCL and current limiting type FCL. Current limiting type FCL such as rectifier type superconducting FCL (RSFCL) has variable equivalent impedance depending on the limit of the current through FCL and power system impedances. In this paper, a method is proposed to incorporate RSFCL into short circuit current analysis, which is needed to evaluate the effectiveness of FCL installed in a large scale power system. Also, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed. The efficiency and effectiveness of these methods are shown by numerical examples

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:11 ,  Issue: 1 )