By Topic

Real-time processing algorithms for target detection and classification in hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA ; Hsuan Ren ; Shao-Shan Chiang

The authors present a linearly constrained minimum variance (TCMV) beamforming approach to real time processing algorithms for target detection and classification in hyperspectral imagery. The only required knowledge for these LCMV-based algorithms is targets of interest. The idea is to design a finite impulse response (FIR) filter to pass through these targets using a set of linear constraints while also minimizing the variance resulting from unknown signal sources. Two particular LCMV-based target detectors, the constrained energy minimization (CEM) and the target-constrained interference-minimization filter (TCIMF), are presented. In order to expand the ability of the LCMV-based target detectors to classification, the LCMV approach is further generalized so that the targets can be detected and classified simultaneously. By taking advantage of the LCMV-based filter structure, the LCMV-based target detectors and classifiers can be implemented by a QR-decomposition and be processed line-by-line in real time. The experiments using HYDICE and AVIRIS data are conducted to demonstrate their real time implementation

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 4 )