By Topic

Wavelet-based simulations of electromagnetic scattering from large-scale two-dimensional perfectly conducting random rough surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. Y. Xia ; Wireless Commun. Res. Center, City Univ. of Hong Kong, Kowloon, China ; C. H. Chan ; Shu-Qing Li ; Jin-Lin Hu
more authors

Simulations of electromagnetic waves scattering from two-dimensional perfectly conducting random rough surfaces are performed using the method of moment (MoM) and the electric field integral equation (EFIE). Using wavelets as basis and testing functions, the resulting moment matrix is generally sparse after applying a threshold truncation. This property makes wavelets particularly useful in simulating large-scale problems, in which reducing memory storage requirement and CPU time are crucial. In this paper, scattering from Gaussian conducting rough surfaces of a few hundred square wavelengths are studied numerically using Haar wavelets. A matrix sparsity less than 10% is achieved for a range of root mean square (RMS) height at eight sampling points per linear wavelength. Parallelization of the code is also performed. Simulation results of the bistatic scattering coefficients are presented for different surface RMS heights up to 1 wavelength. Comparisons with sparse-matrix/canonical-grid approach (SM/CG) and triangular discretized (RWG basis) results are made as well. Depolarization effects are examined for both TE and TM incident waves. The relative merits of the SM/CG method and the present method are discussed

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:39 ,  Issue: 4 )