Cart (Loading....) | Create Account
Close category search window
 

The mass transfer in Al film during local anodic oxidation investigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moskvichev, V.K. ; Byelorussian State Univ. of Inf. & Radioelectron., Minsk ; Parqun, V.N. ; Vrublevsky, I.A.

Mechanical stresses in aluminium thin films arise during electrochemical oxidation. In this case, there are structural stresses in aluminium films caused by the change of specific volume as a result of aluminium structural transformations into anodic oxide. The mechanical stresses in the thin films can be measured by optical interferometry, X-ray diffraction (Malhorta et al., 1997) or laser scanning (Gardner and Flinn, 1988). However, these methods can be used for measuring mechanical stresses only in the field of elastic deformation. The relative softness of aluminium can result in plastic deformation, and Al film plastic deformation results in mass transfer. The main role in the mass transfer is played by slip and creeping dislocation mechanisms with partial stress relaxation (Koleshko et al., 1987; Marieb et al., 1994). The plastic deformation in Al films can be measured by an X-ray method, but usage of this X-ray method does not yield complete representation of the mass transfer as a result of plastic deformation in the film. The main goal of this paper was examination of mass transfer in aluminium films during local area anodization. The plastic deformation arises due to an edge effect of lateral anodization of aluminium under a mask (Surganov and Mozalev, 1997)

Published in:

Advanced Packaging Materials: Processes, Properties and Interfaces, 2001. Proceedings. International Symposium on

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.