By Topic

An empirical study on the visual cluster validation method with Fastmap

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. Huang ; Inst. of E.-Bus. Technol., Hong Kong Univ., Hong Kong ; D. W. Cheung ; M. K. Ng

This paper presents an empirical study on the visual method for cluster validation based on the Fastmap projection. The visual cluster validation method attempts to tackle two clustering problems in data mining: to verify partitions of data created by a clustering algorithm; and to identify genuine clusters from data partitions. They are achieved through projecting objects and clusters by Fastmap to the 2D space and visually examining the results by humans. A Monte Carlo evaluation of the visual method was conducted. The validation results of the visual method were compared with the results of two internal statistical cluster validation indices, which shows that the visual method is in consistence with the statistical validation methods. This indicates that the visual cluster validation method is indeed effective and applicable to data mining applications.

Published in:

Database Systems for Advanced Applications, 2001. Proceedings. Seventh International Conference on

Date of Conference:

21-21 April 2001