By Topic

A computationally efficient superresolution image reconstruction algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nhat Nguyen ; KLA-Tencor Corp., Milpitas, CA, USA ; P. Milanfar ; G. Golub

Superresolution reconstruction produces a high-resolution image from a set of low-resolution images. Previous iterative methods for superresolution had not adequately addressed the computational and numerical issues for this ill-conditioned and typically underdetermined large scale problem. We propose efficient block circulant preconditioners for solving the Tikhonov-regularized superresolution problem by the conjugate gradient method. We also extend to underdetermined systems the derivation of the generalized cross-validation method for automatic calculation of regularization parameters. The effectiveness of our preconditioners and regularization techniques is demonstrated with superresolution results for a simulated sequence and a forward looking infrared (FLIR) camera image sequence

Published in:

IEEE Transactions on Image Processing  (Volume:10 ,  Issue: 4 )