Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Zigzag codes and concatenated zigzag codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Ping ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Xiaoling Huang ; Phamdo, N.

This paper introduces a family of error-correcting codes called zigzag codes. A zigzag code is described by a highly structured zigzag graph. Due to the structural properties of the graph, very low-complexity soft-in/soft-out decoding rules can be implemented. We present a decoding rule, based on the Max-Log-APP (MLA) formulation, which requires a total of only 20 addition-equivalent operations per information bit, per iteration. Simulation of a rate-1/2 concatenated zigzag code with four constituent encoders with interleaver length 65 536, yields a bit error rate (BER) of 10-5 at 0.9 dB and 1.3 dB away from the Shannon limit by optimal (APP) and low-cost suboptimal (MLA) decoders, respectively. A union bound analysis of the bit error probability of the zigzag code is presented. It is shown that the union bounds for these codes can be generated very efficiently. It is also illustrated that, for a fixed interleaver size, the concatenated code has increased code potential as the number of constituent encoders increases. Finally, the analysis shows that zigzag codes with four or more constituent encoders have lower error floors than comparable turbo codes with two constituent encoders

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 2 )